\n \n\"The key point here is to determine the aggregation level of the forecast,\" says Thompson. \"Hotel revenue managers usually forecast arrivals for each day, for each length of stay, and for each rate class. For each level of aggregation, the tool will evaluate three different methods of forecasting, two of which use a wide range of parameter values. Based on whichever of five error measurements is selected, this tool will show which forecast method is best, and rank-order the others.\" \n \nThe tool involves a series of worksheets that are formatted to allow hotel revenue managers to plug in their own historical data. The tool is limited to seven lengths of stay and five rate classes. \n"}]}};
const country = "US";
const language = "en-US,en;q=0.5";
const SITE_LANGUAGE = "en";
const siteName = "Hospitality Technology";
const userRoles = ["anonymous"];
const userUid = 0;
const indexName = "HT";
window.dataLayer = window.dataLayer || [];
const data = {};
data.entityTaxonomy = {};
const contentTypes = [
"article",
"blog",
"bulletin",
"embed_page",
"landing_page",
"event",
"image",
"page",
"product",
"whitepaper",
"video",
"tags",
];
if (
routeInfo &&
"bundle" in routeInfo &&
contentTypes.includes(routeInfo["bundle"])
) {
data.entityBundle = routeInfo.bundle;
data.entityTitle = `${routeInfo.title} | ${siteName}`;
data.entityId = routeInfo.id;
data.entityName = routeInfo.author?.uname;
data.entityCreated = routeInfo.created;
data.sponsored = routeInfo.sponsored;
data.sponsor = routeInfo.sponsoringCompany;
data.entityType = "node";
data.entityLangcode = SITE_LANGUAGE;
data.siteName = siteName;
data.drupalLanguage = language;
data.drupalCountry = country;
data.userRoles = userRoles;
data.userUid = userUid;
data.entityTaxonomyKeys = {};
data.entityTaxonomyHierarchies = {};
data.parentNaicsCode = {};
data.isPro = false;
data.algoliaIndexName = indexName;
// Add toxonomy data
const taxonomies = {
businessTopic: "business_topic",
contentType: "content_type",
company: "company",
marketSegment: "market_segment",
};
const getHierarchy = (term, terms = []) => {
terms.push({ id: term.id, name: term.name });
if (term.parentTerm != null) {
getHierarchy(term.parentTerm, terms);
}
return terms;
};
const getTerms = (term, useApiId = false) => {
return { id: useApiId ? term.apiId : term.id, name: term.name };
};
const getKeys = (term) => {
return { id: term.id, name: term.apiId };
};
Object.entries(taxonomies).forEach(([key, item]) => {
terms = routeInfo[key];
if (terms && terms.length > 0) {
data["entityTaxonomy"][item] = terms.map((term) =>
getTerms(term, key === "company")
);
if (key !== "company") {
data["entityTaxonomyKeys"][item] = terms.map(getKeys);
termGroups = [];
terms.forEach((term, termInd) => {
termGroups[termInd] = getHierarchy(term);
});
data["entityTaxonomyHierarchies"][item] = termGroups;
}
}
});
data["entityTaxonomy"]["tags"] = routeInfo["topics"] || [];
// Primary Topic is either the business topic or the top tag.
if (routeInfo["businessTopic"]?.length > 0) {
data["entityPrimaryTopic"] = routeInfo["businessTopic"][0]["name"];
} else {
if (routeInfo["topics"]?.length > 0) {
data["entityPrimaryTopic"] = routeInfo["topics"][0]["name"];
}
}
// Primary and secondary entityNaicsCodes come from the MarketSegment
if (routeInfo.marketSegment?.length > 0) {
data.entityNaicsCode = {};
data["entityNaicsCode"]["id"] = routeInfo["marketSegment"][0]["id"];
data["entityNaicsCode"]["name"] =
routeInfo["marketSegment"][0]["naicsCode"];
if (routeInfo["marketSegment"][0]["parentTerm"] != null) {
data["parentNaicsCode"]["id"] =
routeInfo["marketSegment"][0]["parentTerm"]["id"];
data["parentNaicsCode"]["name"] =
routeInfo["marketSegment"][0]["parentTerm"]["naicsCode"];
}
} else {
data.entityNaicsCode = [];
}
if (routeInfo.taggedPro) {
data.isPro = routeInfo.taggedPro;
}
window.dataLayer.push(data);
} else if (routeInfo && "vid" in routeInfo) {
data.entityBundle = "tags";
data.entityTitle = routeInfo.name;
data.entityId = routeInfo.id;
data.entityName = routeInfo.author?.uname;
data.entityCreated = routeInfo.created;
data.entityType = "taxonomy_term";
data.entityLangcode = SITE_LANGUAGE;
data.siteName = siteName;
data.sponsored = routeInfo.sponsored;
data.sponsor = routeInfo.sponsoringCompany;
data.drupalLanguage = language;
data.drupalCountry = country;
data.userRoles = userRoles;
data.userUid = userUid;
data.algoliaIndexName = indexName;
data["entityTaxonomy"]["tags"] = {
id: routeInfo["id"],
name: routeInfo["name"],
};
window.dataLayer.push(data);
}
})();
Cornell's Center for Hospitality Research Issues New Forecasting Tool to Assist Hotel Revenue Managers
Cornell's Center for Hospitality Research Issues New Forecasting Tool to Assist Hotel Revenue Managers A spreadsheet-based tool that will assist revenue managers in making demand forecasts is now available from
Cornell's Center for Hospitality Research . The tool, "Revenue Management Forecasting Aggregation Analysis Tool," was developed by Gary Thompson, a professor at the Cornell School of Hotel Administration. The
hotel revenue management tool and a user guide are available from the CHR at no charge.
"The key point here is to determine the aggregation level of the forecast," says Thompson. "Hotel revenue managers usually forecast arrivals for each day, for each length of stay, and for each rate class. For each level of aggregation, the tool will evaluate three different methods of forecasting, two of which use a wide range of parameter values. Based on whichever of five error measurements is selected, this tool will show which forecast method is best, and rank-order the others."
The tool involves a series of worksheets that are formatted to allow hotel revenue managers to plug in their own historical data. The tool is limited to seven lengths of stay and five rate classes.
X
This ad will auto-close in 10 seconds